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1. Introduction

In order to derive evolutional and fundamental relationships between genes,
sequence comparison is a useful tool. However, classical alignment algorithms
deal with only local mutations (i.e., insertions, deletions, and substitutions of
nucleotides) and ignore the global rearrangements (e.g., reversals, transpositions
and translocations of long fragments). In [1], Palmer and Herbon found that
the rearrangements of mitochondrial genomes of Brassica (cabbage) and Brassica
campestris (turnip) are with 99–99.9% identical genes. They discovered that these
molecules, which are almost identical in gene sequence, differ in gene order. The
classical methods of sequence comparison are not very useful to analyze highly
rearranged genomes [2,3]. Genome rearrangement is a common mode of molec-
ular evolution in mitochondrial, chloroplast, viral, bacterial DNA, and human
red–green color blindness [4–9].

For example, two chromosomes with homolgous blocks [10]:

2 1 3 7 5 4 8 6 and 1 2 3 4 5 6 7 8.

A series of reversals that sort permutation 2 1 3 7 5 4 8 6 to 1–8 is given
as follows:
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12345768,

12345678.

Let π = (π1, . . . , πn) be a permutation of {1, . . . , n}, and denote I the iden-
tity permutation(12 . . . n). A reversal of the interval (i, j) is an inversion of the
subsequence πi . . . π j of π , represented by the permutation ρ = (1 . . . i −1 j . . . i j +
1 . . . n). Composition of π with ρ yields πρ = (π1 . . . πi−1π j . . . πiπ j+1 . . . πn),
where elements πi . . . π j have been reversed. The problem of sorting a permuta-
tion by the minimum number of reversals (MIN-SBR) is defined as follows:

MIN–SBR: given a permutation π , find the shortest sequence of reversals
ρ1 . . . ρd(π) such that πρ1 . . . ρd(π) = I .

The optimal solution value d(π) is called the reversal distance of π [11].
Consider a permutation π = (π1 . . . πn) of {1 . . . n}. A long strip of π is

a subsequence πi . . . π j of π such that j > i + 1 and either πk = πk−1 + 1 for
k = i +1, . . . , j or πk = πk−1 −1 for k = i +1, . . . , j . In other words, a long strip
of π corresponds to three or more elements, which appear in the same order or
reverse order in π and I . As far as MIN-SBR is concerned, Hannenhalli and
Pevzner proved that one can assume without loss of generality that π does not
contain any long strips; we therefore, make this assumption in the remainder of
the paper. We also assume without loss of generality π1 �= 1 and πn �= n [11].

The organization of the paper is as follows. In section 2, we present some
definitions and lemmas, section 3 is devoted to the main result, we give some
remarks in section 4.

2. Preliminaries

Definition 2.1 [11]. Define the breakpoint graph G(π) = (V, R ∪ B) of π as
follows. Add to π the elements π0 := 0 and πn+1 := n + 1, redefining π :=
(0π1 . . . πnn+1). Also, let the inverse permutation π−1 of π be defined by π−1

πi
:=

i for i = 0, . . . , n + 1. Let V := {0, . . . , n + 1}, where each vertex v ∈ V repre-
sents an element of π . Graph G(π) is bicolored, i.e., its edge set is partitioned
into two subsets, each represented by a different color. R is the set of, say, red
edges, each of the form (πi , πi+1), for all i ∈ {0, . . . , n} such that |πi −πi+1| �= 1,
i.e., elements, which in consecutive positions in π but not in the identity permu-
tation I . Such a pair πi , πi+1 is called a breakpoint of π . Let b(π) := |R| be the
number of breakpoints of π . B is the set of, say, blue edges, each of the form
(i, i + 1), for all i ∈ {0, . . . , n} such that |π−1

i − π−1
i+1| �= 1, i.e., elements which

are in consecutive positions in I but not in π . Note that each vertex i ∈ V has
either degree 2 or 4, and has the same number of incident blue and red edges.
Therefore, |R| = |B|(= b(π)). The fact that G(π) has no vertices of degree 0
follows from the assumption that π contains no long strips.
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Definition 2.2 [11]. An alternating cycle of G(π) is a sequence of edges r1, b1, r2,

b2, . . . , rm, bm , where ri ∈ R, bi ∈ B for i = 1, . . . , m; ri and b j are incident to a
common vertex for i = j , i = 1, 2, . . . , m and for i = j + 1, j = 1, . . . , m (where
rm+1 := r1); and ri �= r j , bi �= b j for 1 � i < j � m. Note that an alternating
cycle may be not a cycle in common sense. For example, two 3-cycles with one
vertex in common may form an alternating cycle.

Definition 2.3 [11]. An alternating cycle decomposition of G(π) is a collection
of edge-disjoint alternating cycles such that every edge of G(π) is contained in
exactly one cycle of the collection. It is easy to see that G(π) always admits an
alternating cycle decomposition. For a given π let c(π) be the maximum cardi-
nality of an alternating cycle decomposition of G(π).

Lemma 2.4 [6,12]. For every permutation π , d(π) � b(π) − c(π), where b(π) is
defined in definition 2.1, c(π) is defined in definition 2.3, and d(π) is the reversal
distance of π defined in section 1.

Definition 2.5. We call a graph G even graph if and only if it has no vertex with
odd degree. For example, all eulerian graphs are even graphs.

Definition 2.6. For a given π let c1(π) be the maximum cardinality cycle decom-
position of G(π). Similarly, let c1(G) be the maximum cardinality cycle decom-
position of even graph G.

Definition 2.7. A generalized tree GT is a plane even graph obtained from a tree
T by using some cycles to replace some vertices of T (may not replace all verti-
ces of T ) and contracting each edge of T .

For example, trivially, an isolated vertex is a GT , a cycle is a GT too, the
following graph G is a GT obtained from T :

V (T ) = {u1, u2, u3, u4, u5},
E(T ) = {u1u2, u2u3, u3u4, u3u5}.

In order to obtain G, we use cycle v1v2v3v4v1 to replace u1, cycle v4v5v6v4
to replace u2, cycle v5v7v10v5 to replace u3, cycle v7v8v9v7 to replace u4, cycle
v10v11v12v10 to replace u5, and contract every edge of T . That is,

V (G) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12},
E(G) = {v1v2, v2v3, v3v4, v4v1, v4v5, v5v6, v6v4,

v5v7, v7v10, v10v5, v7v8, v8v9, v9v7, v10v11, v11v12, v12v10}.
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Note that in G we may put cycles v4v5v6 and v1v2v3v4 into cycle v5v7v10,
and let cycles v7v8v9 and v10v11v12 remain in the exterior of cycle v5v7v10.

Lemma 2.8 [13].

2|E(G)| =
∑

v∈V (G)

d(v),

where |E(G)| is the edge number of G, d(v) is the degree of vertex v.

Lemma 2.9 [13]. If G is a plane graph, then

|F(G)| = |E(G)| − |V (G)| + ω(G) + 1,

where |F(G)| is the face number of G, |E(G)| is the edge number of G, |V (G)|
is the vertex number of G, ω(G) is the component number of G.

Definition 2.10. Let G be a plane even graph. For the cycle decomposition of G,
if each cycle constitues the boundary of a face by itself, we call the cycle decom-
position further as non-intersecting cycle decomposition of G. Let c2(G) be the
maximum cardinality of non-intersecting cycle decomposition of G. An example
is given in definition 2.11.

Definition 2.11. For a plane even graph G, let its non-intersecting cycle decom-
position be C1, C2, . . . , Cm . When m � 2, a non-induced face is a face whose
boundary is a cycle Ci , where i = 1, 2, . . . , m. Otherwise, a face is called an
induced face. When m = 1, we call the interior face a non-induced face and the
exterior face an induced face. For example, define G = (V, E) as follows:

V (G) = {v1, v2, v3, v4, v5, v6, v7},

E(G) = {v1v2, v2v3, v3v4, v4v6, v6v1, v2v5, v5v4, v4v7, v7v2}.
Suppose the non-intersecting cycle decomposition of G is as follows:

C1 = v1v2v3v4v6v1,

C2 = v2v5v4v7v2.

Since {C1, C2} is a non-intersecting cycle decomposition of G, we assume
that v5 and v7 are in the exterior of C1 and v2v5, v5v4, v4v7, v7v2 are on the
same side of C1. The faces f1, f2, f3, f4 of G are defined as follows: the bound-
ary of f1 is C1, the boundary of f2 is C2, the boundary of f3 is C3 = v2v3v4v5v2
or v2v3v4v7v2, f4 is the unbounded face, that is, f4 is the exterior face of G.
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By the definition of induced face and non-induced face, we know that f1
and f2 are non-induced faces, f3 and f4 are induced faces.

Lemma 2.12 [10].

d(π) � 1
2

b(π),

where d(π) is the reversal distance of π defined in section 1, b(π) is defined in
definition 2.1.

Lemma 2.12 is equivalent to the following Claim.
Claim: For permutation π , we have

d(π) � �1
4
(m + 2n)�,

where d(π) is the reversal distance of π which is defined in Section 1, m the ver-
tex number with degree 2 in G(π), and n is the vertex number with degree 4 in
G(π).

In fact, by lemma 2.8 we have |E(G(π))| = m + 2n. By definition 2.1, we
have |E(G(π))| = 2b(π). Thus, b(π) = 1

2 (m + 2n). The equivalence follows.

3. Main result

Theorem 3.1. For permutation π , if G(π) is a plane graph we have

d(π) � 1
2

m − ω(G(π)).

Further, when G(π) is not the union of some generalized trees, we have

d(π) � 1
2

m − ω(G(π)) + 1,

where G(π) is defined in definition 2.1, m denotes the number of vertices with
degree 2 in G(π), ω(G(π)) is the number of components in G(π), d(π) is the
reversal distance of π defined in Introduction.

Proof.
Claim 1: Let G be a plane even graph. When G is an empty graph, we have
c1(G) = 0. Otherwise, we have

1
2
|F(G)| � c1(G) � |F(G)| − 1;

c1(G) = |F(G)|−1 if and only if G is the union of some generalized trees. When
1
2 |F(G)| = c1(G), G contains exactly one non-trivial component without cut
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vertex, where |F(G)| = |E(G)| − |V (G)| + ω(G) + 1, ω(G) denotes the num-
ber of components of G, |F(G)| is the number of faces of G, c1(G) is defined
in definition 2.6.

In fact, when G is an empty graph, Claim 1 holds obviously. In the follow-
ing we suppose that G is not an empty graph.
Claim 2: If there exists a cycle decomposition of G, there exists a non-intersecting
cycle decomposition of G, and c1(G) = c2(G), where c1(G) and c2(G) are
defined in definitions 2.6 and 2.10, respectively.

In fact, let the cycle decomposition of G be C1, C2, . . . , Ci , . . . , C j , . . . , Ck ,
where Ci and C j are two intersecting cycles in the cycle decomposition of G
above and let

V (Ci ) = {u1, u2, . . . , ua, ua+1, . . . , ub, ub+1, . . . , us},

E(Ci ) = {u1u2, u2u3, . . . , ua−1ua, . . . , ubub+1, . . . , usu1},

V (C j ) = {v1, v2, . . . , vt , vt+1, . . . , vh, vh+1, . . . , vg},

E(C j ) = {v1v2, v2v3, . . . , vt−1vt , vtvt+1, . . . , vhvh+1, . . . , vgv1},
where ua = vt , ub = vh , V (Ci )∩ V (C j ) ⊇ {ua, ub}. Without loss of generality, let
{vt+1, vt+2, . . . , vh−1} be in the interior of Ci .

We construct two new cycles as follows:

C
′′
i = u1u2 . . . uavt+1vt+2 . . . vh−1ubub+1 . . . usu1,

C
′′
j = v1v2 . . . vt ua+1ua+2 . . . ub−1vhvh+1 . . . vgv1.

By definition 2.10, if C
′′
i and C

′′
j are not two non-intersecting cycles, we can do as

above. At last, we obtain C
′
i and C

′
j are two non-intersecting cycles. It is easy to

see that C1, C2, . . . Ci−1, C
′
i , Ci+1, . . . , C j−1, C

′
j , C j+1, . . . , Ck is a cycle decom-

position of G.
If there were two intersecting cycles in C1, . . . , Ci−1, C

′
i , Ci+1, . . . , C j−1, C

′
j ,

C j+1, . . . , Ck further, we could do as above. Hence, there exists a non-intersect-
ing cycle decomposition of G.

By definitions 2.6 and 2.10, we have c2(G) � c1(G). From the above con-
struction we obtain c1(G) � c2(G). Thus, c1(G) = c2(G). The claim follows.

Let c1(G) = l and C1, C2, . . . , Cl be the maximum cardinality non-intersect-
ing cycle decomposition of G. For a plane embedding of G, we find the corre-
sponding edges of C1, C2, . . . , Cl . Note that it is possible |V (Ci ) ∩ V (C j )| � 2,
where i �= j . When the boundary of the exterior face is Ci , where Ci ∈ {C1,

C2, . . . , Cl}, that is, the exterior face is a non-induced face, by definition 2.11,
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there exists one interior face which is an induced face. Hence, |F(G)| > c2(G).
By Claim 2, we have

c1(G) � |F(G)| − 1,

where |F(G)| denotes the number of faces of G. When the boundary of the
exterior face is constituted by the edges of at least two cycles in C1, C2, . . . , Cl ,
that is, the exterior face is an induced face, by definition 2.11, we have c2(G) >

|F(G)|. By Claim 2, we have

c1(G) � |F(G)| − 1.

By lemma 2.9, we have

c1(G) � |E(G)| − |V (G)| + ω(G).

In the following we want to prove that c1(G) = |F(G)|− 1 if and only if G
is the union of some generalized trees.

Suppose G is the union of some generalized trees, c1(G) = |F(G)|−1 holds
obviously.

On the other hand, suppose c1(G) = |F(G)| − 1 holds, we want to prove
that G is the union of some generalized trees by mathematical induction.

(1) When c1(G) = 1,we have |F(G)| = 2. Then, G is the union of one cycle
and some isolated vertices. Therefore, G is the union of some general-
ized trees.

(2) Suppose the conclusion holds for any graph G
′′

with c1(G
′′
) = k and

c1(G
′′
) = |F(G

′′
)| − 1. Let c1(G) = k + 1 hold and the maximum cardi-

nality cycle decomposition of G be C1, C2, . . . , Ck, Ck+1. We have two
cases to discuss.

Case 1: There exists a cycle Ci in C1, C2, . . . , Ck+1 such that |V (Ci )∩V (C j )| = 0,
where j = 1, 2, . . . k+1 and i �= j . Let G(3) = G−V (Ci ). It is easy to see that the
maximum cardinality cycle decomposition of G(3) is k. Since c1(G) = |F(G)|−1
we have

c1(G
(3)) = |F(G(3))| − 1.

Thus, G(3) is the union of some generalized trees, hence, G is the union of some
generalized trees.
Case 2: For any Ci , there exists C j such that |V (Ci ) ∩ V (C j )| � 1, where i �= j ,
i = 1, 2, . . . , k + 1.
Claim 3: If for any Ci there exists C j such that |V (Ci ) ∩ V (C j )| � 1 holds, we
have

|V (Ci ) ∩ V (C j )| = 1.
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Otherwise, for any Ci there exists C j such that |V (Ci ) ∩ V (C j )| � 2, we have
|F(G)| � c1(G) + 2, which contradicts with |F(G)| = c1(G) + 1. Thus, for any
Ci and C j we have

|V (Ci ) ∩ V (C j )| � 1.

We obtain a new graph G(4) = G − E(Ci ), where Ci is a fixed cycle in
C1, C2, . . . , Ck+1. Obviously, c1(G(4)) = k and c1(G(4)) = |F(G(4))| − 1. By
hypothesis in (2), we know that G(4) is the union of some generalized trees,
hence, G is the union of some generalized trees. Hence, c1(G) = |F(G)| − 1 if
and only if G is the union of some generalized trees.

In the following, we use mathematical induction to prove that 1
2 |F(G)| �

c1(G). By Claim 2, we want to prove that 1
2 |F(G)| � c2(G).

(3) When c2(G) = 1, we have |F(G)| = 2, the conclusion follows.

(4) Suppose the conclusion holds for any plane even graph G(5) with
c2(G(5)) = m, where m � 1. Let G be a plane even graph with
c2(G) = m + 1 and let the non-intersecting cycle decomposition of
G be C1, C2, . . . , Cm, Cm+1. Let G(6) = G − E(Cm+1), by hypothesis
in (4) we have 1

2 |F(G(6))| � c2(G(6)), where |F(G(6))| is the number
of faces in G(6). By definition 2.10, we have c2(G) = c1(G(6)) + 1.
When we add Cm+1 to G(6) to form G, by definition 2.11, Cm+1 consti-
tutes a face of G and Cm+1 may cut the embedding face of G(6) into at
most two new faces. In fact, when we add Cm+1 to G(6) to form G and
|F(G)| − |F(G(6))| � 3, we can decompose G again as we do in Claim
2 and obtain a new non-intersecting cycle decomposition of G and find
a new cycle Cm+1 such that |F(G)| − |F(G(6)| � 2. Thus, we have

|F(G)| � |F(G(6))| + 2.

Hence, 1
2 |F(G)| � c2(G).

Claim 4: When c1(G) = 1
2 |F(G)|, G contains exactly one non-trivial component

without cut vertex.
In fact, let the components of G be G1, G2, . . . , Gl, . . . , Gk , and G1, G2,

. . . , Gl be the non-trivial components of G, where k � l, l � 2.
Obviously,

c1(G) = c1(G1) + · · · + c1(Gl).

We have proved that

1
2
|F(H)| � c1(H),
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where H is any plane even graph, especially, we have

c1(Gi ) � 1
2
|F(Gi )|,

where |F(Gi )| denotes the face number of Gi , i = 1, 2, . . . , l.
Hence,

c1(G1) + · · · + c1(Gl) � 1
2
(|F(G1)| + · · · + |F(Gl)|).

Because G1, . . . , Gl share a common exterior face, we have

|F(G)| = |F(G1)| + · · · + |F(Gl)| − (l − 1).

Because c1(G) = 1
2 |F(G)| we have

c1(G1) + · · · + c1(Gl) = 1
2
[|F(G1)| + · · · + |F(Gl)| − (l − 1)].

Therefore, we obtain

1
2
[|F(G1)| + · · · + |F(Gl)| − (l − 1)] � 1

2
(|F(G1)| + · · · + |F(Gl)|),

which is a contradiction.
In the following we want to prove that the unique non-trivial component

contains no cut vertex. Without loss of generality, we suppose G has no isolated
vertex. Otherwise, we consider the unique non-trivial component of G.

Suppose G has a cut vertex v. By the definition of cut vertex we have
ω(G − v) > ω(G). For each non-trivial component of G − v, we use one edge to
connect two vertices whose degrees are odd. In this way, at last we obtain G(7).
In the process we can assure G(7) is a plane graph. In fact, when we use one edge
to connect two vertices whose degrees are odd, we can choose this adding edge
as if it had been two original edges of G without v. Since G is a plane graph we
have G(7) is a plane graph. Let the non-trivial component number of G(7) be r ,
where r � 2.

|F(G(7))| denotes the face number of G(7), c1(G(7)) denotes the maximum
cardinality cycle decomposition of G(7). It is easy to see that G(7) is a plane even
graph and

|F(G(7))| = |F(G)| + (r − 1),

c1(G
(7)) = c1(G).

Since 1
2 |F(G)| = c1(G), we have

1
2
[|F(G(7))| − (r − 1)] = c1(G

(7)).
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However, we have prove that

c1(H) � 1
2
|F(H)|,

where H is any plane even graph, especially, we have c1(G(7)) � 1
2 |F(G(7))|,

which is a contradiction.
From the above argument, Claim 1 follows.
Let n denote the number of vertices with degree 4 in G(π). By lemma 2.8,

we have |E(G(π))| = m + 2n. Since |E(G(π))| = 2b(π), we have

b(π) = 1
2
(m + 2n).

Claim 5:

d(π) � b(π) − c1(π).

In fact, if an alternating cycle decomposition is not a cycle decomposition,
we decompose it further. Hence, c(π) � c1(π). By lemma 2.4, the claim follows.

By Claims 1 and 5, the theorem follows.

4. Concluding remarks

Lemma 2.12 is a very useful lower bound in [10]. However, when m is big
enough, n and ω(G(π)) are small enough, it is easy to see that theorem 3.1 is
much better than lemma 2.12. For example, let

π = 0 10 9 7 8 6 5 3 4 1 2 11 13 12 14.

By definition 2.1, we have m = 14, n = 1, ω(G(π)) = 2. By lemma 2.12, we
have d(π) � 4. By theorem 3.1, we have d(π) � 5.

Theorem 3.1 can be used conveniently in practice. First, ω(G(π)) always
equals 1. If you wanted to find it exactly, you could find it by computers in poly-
nomial time (see [14]). Second, m and n can be counted easily, let alone by com-
puters. Let

π = π0π1π2 . . . πkπk+1,

where π0 = 0, πk+1 = k+1. By definition 2.1, the degrees of vertices π0 and πk+1
are 2. For vertex πi , if |πi − πi−1| = 1 or |πi − πi+1| = 1, by definition 2.1, the
degrees of π is 2. For example, let

π = 042135,

where π2 = 2. Since |π2 − π3| = 1 we have the degree of vertex 2 is 2. At last, it
is easy to see that n = k + 2 − m.
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By lemma 2.4, we obtain d(π) � b(π) − c(π). From Caprara [11, page
94], we know that in practical cases this bound turns out to be very tight,
and is frequently equal to the optimum. By Claim 1 of theorem 3.1, we have
1
2 |F(G(π))| � c1(G(π)). Therefore, we obtain an upper bound of d(π) which
is frequently holds:

d(π) � 	1
2
[|V (G(π))| − ω(G(π)) − 1]
,

where d(π) is the reversal distance of π , |V (G(π))| is the vertex number of
G(π), ω(G(π)) is the number of components of G(π).

Can we delete the condition “if G(π) is a plane graph " in theorem 3.1?
That is, we conjecture that G(π) must be a plane graph.
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